The class rotation allows to work with three dimensional orthogonal matrices.
Syntax
rot = rotation.byEuler(phi1,Phi,phi2)
rot = rotation.byEuler(alpha,beta,gamma,'ZYZ')
rot = rotation.byAxisAngle(v,omega)
rot = rotation.byMatrix(A)
rot = rotation.map(u1,v1)
rot = rotation.map(u1,v1,u2,v2)
rot = reflection(b)
rot = rotation.inversion
rot = reflection(n)
rot = rotation.byRodrigues(v)
rot = rotation(fibre(u1,v1),'resolution',5*degree)
rot = rotation(quaternion(a,b,c,d))
Input
phi1, Phi, phi2 | Euler angles |
u1, u2 | vector3d |
v, v1, v2 | vector3d |
n | vector3d |
Output
rot | rotation |
Class Properties
phi1, Phi, phi2 | Euler angles |
i | inversion |
a, b, c, d | quaternion components |