compute Taylor factor and strain dependent orientation gradient
[M,b,W] = calcTaylor(eps,sS)
% consider uniaxial tension in (100) direction about 30 percent F = deformationGradientTensor.uniaxial(vector3d.X,1.3)
F = deformationGradientTensor (1) rank: 2 (3 x 3) 1.3 0 0 0 0.8771 0 0 0 0.8771
% the corresponding rate of deformation tensor becomes L = logm(F)
L = velocityGradientTensor (1) rank: 2 (3 x 3) *10^-2 26.236 0 0 0 -13.118 0 0 0 -13.118
% define a crystal orientation cs = crystalSymmetry('cubic') ori = orientation.byEuler(0,30*degree,15*degree,cs)
cs = crystalSymmetry symmetry: m-3m elements: 48 a, b, c : 1, 1, 1 ori = orientation (m-3m → xyz) Bunge Euler angles in degree phi1 Phi phi2 0 30 15
% define a slip system sS = slipSystem.fcc(cs)
sS = slipSystem (m-3m) u v w | h k l CRSS 0 1 -1 1 1 1 1
% compute the Taylor factor [M,b,spin] = calcTaylor(inv(ori)*L,sS.symmetrise)
M = 2.2034 b = Columns 1 through 7 0.0000 0.0000 0.1244 0.0000 0.0803 0.0000 0.1244 Columns 8 through 14 0.0803 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Columns 15 through 21 0.0000 0.0000 0.0803 0.0039 0.0000 0.0039 0.0000 Columns 22 through 24 0.0803 0.0000 0.0000 spin = spinTensor (m-3m) rank: 2 (3 x 3) *10^-3 0 98.39 0 -98.39 0 0 0 0 0