calculate the uncorrelated misorientations between two ebsd phases
For two orientations \(g_i\) and \(g_j\) the misorientation is defined by \( m = g_i^{-1} \circ g_j \).
Syntax
% 1000 uncorrelated misorientations of phase1
mori = calcMisorientation(ebsd('phase1'),'sampleSize',1000)
% uncorrelated misorientations with minimum distance 100
mori = calcMisorientation(ebsd('phase1'),'minDistance',100)
% uncorrelated misorientations between phase1 and phase2
mori = calcMisorientation(ebsd('phase1'),ebsd('phase2'))
% compute pairs of orientations to be used to compute axis
% distributions in specimen coordinates
[ori1,ori2] = calcMisorientation(ebsd('phase1'))
plot(axis(ori1,ori2),'contourf')
Input
ebsd | EBSD |
Output
m | orientation |