compute Taylor factor and strain dependent orientation gradient
[MFun,~,spinFun] = calcTaylor(eps,sS,'SO3Fun','bandwidth',32) [M,b,W] = calcTaylor(eps,sS)
% define 10 percent strain eps = 0.1 * strainTensor(diag([1 -0.75 -0.25]))
eps = strainTensor (xyz) type: Lagrange rank: 2 (3 x 3) *10^-2 10 0 0 0 -7.5 0 0 0 -2.5
% define a crystal orientation cs = crystalSymmetry('cubic') ori = orientation.byEuler(0,30*degree,15*degree,cs)
cs = crystalSymmetry symmetry: m-3m elements: 48 a, b, c : 1, 1, 1 ori = orientation (m-3m → xyz) Bunge Euler angles in degree phi1 Phi phi2 0 30 15
% define a slip system sS = slipSystem.fcc(cs)
sS = slipSystem (m-3m) u v w | h k l CRSS 0 1 -1 1 1 1 1
% compute the Taylor factor w.r.t. the given orientation [M,b,W] = calcTaylor(inv(ori)*eps,sS.symmetrise)
M = 2.1829 b = Columns 1 through 7 0.0000 0.0000 0.0565 0.0000 0.0097 0.0000 0.0565 Columns 8 through 14 0.0422 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Columns 15 through 21 0.0000 0.0000 0.0106 0.0067 0.0000 0.0067 0.0000 Columns 22 through 24 0.0293 0.0000 0.0000 W = spinTensor (m-3m) rank: 2 (3 x 3) *10^-3 0 43.07 -5.6 -43.07 0 -10.46 5.6 10.46 0
% update orientation oriNew = ori .* orientation(-W)
oriNew = orientation (m-3m → xyz) Bunge Euler angles in degree phi1 Phi phi2 0.287316 29.3354 17.2179