variants of an orientation relationship
Syntax
ori_parents = ori_child * inv(mori.parents)
Input
mori | child to parent orientation relationship |
ori_child | child orientation |
Output
ori_parents | all possible parent orientation |
Example
% parent symmetry
cs_fcc = crystalSymmetry('m-3m', [3.6599 3.6599 3.6599], 'mineral', 'Iron fcc');
% child symmetry
cs_bcc = crystalSymmetry('m-3m', [2.866 2.866 2.866], 'mineral', 'Iron bcc')
cs_bcc = crystalSymmetry
mineral : Iron bcc
symmetry: m-3m
elements: 48
a, b, c : 2.9, 2.9, 2.9
% define a bcc child orientation
ori_bcc = orientation.goss(cs_bcc)
ori_bcc = orientation (Iron bcc → xyz)
Bunge Euler angles in degree
phi1 Phi phi2
0 45 0
% define Nishiyama Wassermann fcc to bcc orientation relation ship
NW = orientation.NishiyamaWassermann (cs_fcc,cs_bcc)
NW = misorientation (Iron fcc → Iron bcc)
(111) || (011) [1-10] || [-100]
% compute a fcc parent orientation related to the bcc child orientation
ori_fcc = ori_bcc * NW
ori_fcc = orientation (Iron fcc → xyz)
Bunge Euler angles in degree
phi1 Phi phi2
180 54.7356 45
% compute all symmetrically possible parent orientations
ori_fcc = unique(ori_bcc.symmetrise * NW)
ori_fcc = orientation (Iron fcc → xyz)
size: 12 x 1
Bunge Euler angles in degree
phi1 Phi phi2
276.917 96.8675 90.4156
13.6387 134.181 144.598
346.361 45.8193 324.598
83.0827 83.1325 270.416
193.639 134.181 144.598
276.917 83.1325 179.584
166.361 45.8193 324.598
83.0827 96.8675 359.584
180 125.264 225
180 54.7356 45
0 144.736 45
0 35.2644 225
% same using the function parents
ori_fcc2 = ori_bcc * NW.parents
ori_fcc2 = orientation (Iron fcc → xyz)
size: 1 x 12
Bunge Euler angles in degree
phi1 Phi phi2
276.917 96.8675 90.4156
13.6387 134.181 144.598
166.361 45.8193 324.598
83.0827 96.8675 359.584
276.917 83.1325 179.584
180 125.264 225
83.0827 83.1325 270.416
180 54.7356 45
193.639 134.181 144.598
0 144.736 45
360 35.2644 225
346.361 45.8193 324.598