decomposes the tensor into
Syntax
% decompose into symmetric portions
[Tiso, T1, T2, T3] = symmetricDecomposition(T,cs1,cs2,cs3)
Input
T | tensor |
cs1, cs2, cs3 | symmetry |
Output
T1, T2, T3 | tensor |
Example
cs = crystalSymmetry('222',[18 8.8 5.2],'mineral','Enstatite');
T = stiffnessTensor([
225 54 72 0 0 0
54 214 53 0 0 0
72 53 178 0 0 0
0 0 0 78 0 0
0 0 0 0 82 0
0 0 0 0 0 76],cs);
csHex = crystalSymmetry('622','mineral','Enstatite');
csTet = crystalSymmetry('422','mineral','Enstatite');
[Tiso, THex, TTet, TOrt] = symmetricDecomposition(T,csHex,csTet)
Tiso = stiffnessTensor (Enstatite)
unit: GPa
rank: 4 (3 x 3 x 3 x 3)
tensor in Voigt matrix representation:
210.2 57.4 57.4 0 0 0
57.4 210.2 57.4 0 0 0
57.4 57.4 210.2 0 0 0
0 0 0 76.4 0 0
0 0 0 0 76.4 0
0 0 0 0 0 76.4
THex = stiffnessTensor (Enstatite)
unit: GPa
rank: 4 (3 x 3 x 3 x 3)
tensor in Voigt matrix representation:
5.92 -0.02 5.1 0 0 0
-0.02 5.92 5.1 0 0 0
5.1 5.1 -32.2 0 0 0
0 0 0 3.6 0 0
0 0 0 0 3.6 0
0 0 0 0 0 2.97
TTet = stiffnessTensor (Enstatite)
unit: GPa
rank: 4 (3 x 3 x 3 x 3)
tensor in Voigt matrix representation:
3.375 -3.375 0 0 0 0
-3.375 3.375 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 -3.375
TOrt = stiffnessTensor (Enstatite)
unit: GPa
rank: 4 (3 x 3 x 3 x 3)
tensor in Voigt matrix representation:
5.5 0 9.5 0 0 0
0 -5.5 -9.5 0 0 0
9.5 -9.5 0 0 0 0
0 0 0 -2 0 0
0 0 0 0 2 0
0 0 0 0 0 0
References
- Decomposition of the elastic tensor and geophysical applications J.T. Browaeys, S. Chevrot, Geophysical Journal International (2004).