decomposes the tensor into
% decompose into symmetric portions [Tiso, T1, T2, T3] = symmetricDecomposition(T,cs1,cs2,cs3)
cs = crystalSymmetry('222',[18 8.8 5.2],'mineral','Enstatite');
T = stiffnessTensor([ 225 54 72 0 0 0 54 214 53 0 0 0 72 53 178 0 0 0 0 0 0 78 0 0 0 0 0 0 82 0 0 0 0 0 0 76],cs);
csHex = crystalSymmetry('622','mineral','Enstatite'); csTet = crystalSymmetry('422','mineral','Enstatite');
[Tiso, THex, TTet, TOrt] = symmetricDecomposition(T,csHex,csTet)
Tiso = stiffnessTensor (Enstatite) unit: GPa rank: 4 (3 x 3 x 3 x 3) tensor in Voigt matrix representation: 210.2 57.4 57.4 0 0 0 57.4 210.2 57.4 0 0 0 57.4 57.4 210.2 0 0 0 0 0 0 76.4 0 0 0 0 0 0 76.4 0 0 0 0 0 0 76.4 THex = stiffnessTensor (Enstatite) unit: GPa rank: 4 (3 x 3 x 3 x 3) tensor in Voigt matrix representation: 5.92 -0.02 5.1 0 0 0 -0.02 5.92 5.1 0 0 0 5.1 5.1 -32.2 0 0 0 0 0 0 3.6 0 0 0 0 0 0 3.6 0 0 0 0 0 0 2.97 TTet = stiffnessTensor (Enstatite) unit: GPa rank: 4 (3 x 3 x 3 x 3) tensor in Voigt matrix representation: 3.375 -3.375 0 0 0 0 -3.375 3.375 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3.375 TOrt = stiffnessTensor (Enstatite) unit: GPa rank: 4 (3 x 3 x 3 x 3) tensor in Voigt matrix representation: 5.5 0 9.5 0 0 0 0 -5.5 -9.5 0 0 0 9.5 -9.5 0 0 0 0 0 0 0 -2 0 0 0 0 0 0 2 0 0 0 0 0 0 0