quadrature edit page

Compute the SO(3)-Fourier/Wigner coefficients of an given SO3Fun or given evaluations on a specific quadrature grid.

This method evaluates the given SO3Fun on an with respect to symmetries fundamental Region. Afterwards it uses a inverse trivariate nfft/fft and an adjoint coefficient transform which is based on a representation property of Wigner-D functions. Hence it do not use the NFSOFT (which includes a fast polynom transform) as in the older method SO3FunHarmonic.quadratureNFSOFT.

Syntax

SO3F = SO3FunHarmonic.quadrature(nodes,values,'weights',w)
SO3F = SO3FunHarmonic.quadrature(f)
SO3F = SO3FunHarmonic.quadrature(f, 'bandwidth', bandwidth)

Input

nodes quadratureSO3Grid, rotation, orientation
values double (first dimension has to be the evaluations)
f function handle in orientation (first dimension has to be the evaluations)

Output

SO3F SO3FunHarmonic

Options

bandwidth minimal harmonic degree (default: 64)

See also

SO3FunHarmonic.adjoint