calcCluster edit page

sort orientations into clusters

Syntax

[c,center] = calcCluster(ori,'halfwidth',2.5*degree)
[c,center] = calcCluster(ori,'numCluster',n,'method','hierarchical')
[c,center] = calcCluster(ori,'maxAngle',omega,'method','hierarchical')

Input

ori orientation
n number of clusters
omega maximum angle

Output

c list of clusters
center center of the clusters

Example

% generate orientation clustered around 5 centers
cs = crystalSymmetry('432');
center = orientation.rand(5,cs);
odf = unimodalODF(center,'halfwidth',5*degree)
ori = odf.discreteSample(1500);
odf = SO3FunRBF (432 → xyz)
 
  multimodal components
  kernel: de la Vallee Poussin, halfwidth 5°
  center: 5 orientations
 
  Bunge Euler angles in degree
     phi1     Phi    phi2  weight
  89.4853 137.123 264.307     0.2
    88.93 37.2102 33.2772     0.2
  206.735 28.2847 248.627     0.2
  123.733 176.985 187.827     0.2
  109.525 87.7096 353.512     0.2
% find the clusters and its centers
[cId,centerRec] = calcCluster(ori,'silent');
Step size:1°
Step size:0.20972°
Step size:0.068719°
Step size:1°
Step size:0.20972°
Step size:0.085899°
Step size:1.9531°
Step size:3.0518°
Step size:1°
Step size:0.26214°
Step size:0.085899°
Step size:1°
Step size:0.512°
Step size:0.16777°
Step size:0.13422°
% visualize result
for i = 1:length(centerRec)
plot(ori(cId==i),'axisAngle')
hold on
plot(centerRec(i),'MarkerFaceColor','k','MarkerSize',15)
end
hold off