Evaluate an SO3FunHarmonic on an equispaced grid in Euler angles \[(\alpha_a,\beta_b,\gamma_c) = (\frac{2\pi a}{H_1},\frac{\pi b}{H_2-1},\frac{2\pi c}{H_3})\] where \(a=0,...,H_1-1\), \(b=0,...,H_2-1\) and \(c=0,...,H_3-1\).
Therefore we transform the Harmonic series to an usual Fourier series equivalent as in the function eval
. But we use an equispaced FFT instead of the NFFT.
Syntax
Input
SO3F | SO3FunHarmonic |
rot | quadratureSO3Grid - 'ClenshawCurtis' |
Output
f | values at this grid points |
nodes | orientation |
Example
See also
SO3FunHarmonic.eval SO3FunHarmonic.evalNFSOFT SO3FunHarmonic.evalSectionsEquispacedFFT