how to calculate average material tensors from ODF and EBSD data
MTEX offers several ways to compute average material tensors from ODFs or EBSD data.
On this page ... |
Import EBSD Data |
Data Correction |
Define Elastic Stiffness Tensors for Glaucophane and Epidote |
The Average Tensor from EBSD Data |
ODF Estimation |
The Average Tensor from an ODF |
set up a nice colormap
setMTEXpref('defaultColorMap',blue2redColorMap);
We start by importing some EBSD data of Glaucophane and Epidote.
ebsd = EBSD.load([mtexDataPath '/EBSD/data.ctf'],... 'convertEuler2SpatialReferenceFrame')
ebsd = EBSD Phase Orientations Mineral Color Symmetry Crystal reference frame 0 28015 (56%) notIndexed 1 13855 (28%) Glaucophane light blue 12/m1 X||a*, Y||b*, Z||c 2 4603 (9.2%) Epidote light green 12/m1 X||a*, Y||b*, Z||c 3 3213 (6.4%) Pyrope light red m-3m 4 295 (0.59%) omphacite cyan 12/m1 X||a*, Y||b*, Z||c Properties: bands, bc, bs, error, mad, x, y Scan unit : um
Let's visualize a subset of the data
plot(ebsd(inpolygon(ebsd,[2000 0 1400 375])))
next, we correct the data by excluding orientations with large MAD value
% define maximum acceptable MAD value MAD_MAXIMUM= 1.3; % eliminate all meassurements with MAD larger than MAD_MAXIMUM ebsd(ebsd.mad >MAD_MAXIMUM) = [] plot(ebsd(inpolygon(ebsd,[2000 0 1400 375])))
ebsd = EBSD Phase Orientations Mineral Color Symmetry Crystal reference frame 0 28015 (56%) notIndexed 1 13779 (28%) Glaucophane light blue 12/m1 X||a*, Y||b*, Z||c 2 4510 (9.1%) Epidote light green 12/m1 X||a*, Y||b*, Z||c 3 3212 (6.5%) Pyrope light red m-3m 4 218 (0.44%) omphacite cyan 12/m1 X||a*, Y||b*, Z||c Properties: bands, bc, bs, error, mad, x, y Scan unit : um
Glaucophane elastic stiffness (Cij) Tensor in GPa Bezacier, L., Reynard, B., Bass, J.D., Wang, J., and Mainprice, D. (2010) Elasticity of glaucophane and seismic properties of high-pressure low-temperature oceanic rocks in subduction zones. Tectonophysics, 494, 201-210.
% define the tensor coefficients MGlaucophane =.... [[122.28 45.69 37.24 0.00 2.35 0.00];... [ 45.69 231.50 74.91 0.00 -4.78 0.00];... [ 37.24 74.91 254.57 0.00 -23.74 0.00];... [ 0.00 0.00 0.00 79.67 0.00 8.89];... [ 2.35 -4.78 -23.74 0.00 52.82 0.00];... [ 0.00 0.00 0.00 8.89 0.00 51.24]]; % define the reference frame csGlaucophane = crystalSymmetry('2/m',[9.5334,17.7347,5.3008],... [90.00,103.597,90.00]*degree,'X||a*','Z||c','mineral','Glaucophane'); % define the tensor CGlaucophane = stiffnessTensor(MGlaucophane,csGlaucophane)
CGlaucophane = stiffnessTensor unit : GPa rank : 4 (3 x 3 x 3 x 3) mineral: Glaucophane (12/m1, X||a*, Y||b*, Z||c) tensor in Voigt matrix representation: 122.28 45.69 37.24 0 2.35 0 45.69 231.5 74.91 0 -4.78 0 37.24 74.91 254.57 0 -23.74 0 0 0 0 79.67 0 8.89 2.35 -4.78 -23.74 0 52.82 0 0 0 0 8.89 0 51.24
Epidote elastic stiffness (Cij) Tensor in GPa Aleksandrov, K.S., Alchikov, U.V., Belikov, B.P., Zaslavskii, B.I. and Krupnyi, A.I.: 1974 'Velocities of elastic waves in minerals at atmospheric pressure and increasing the precision of elastic constants by means of EVM (in Russian)', Izv. Acad. Sci. USSR, Geol. Ser.10, 15-24.
% define the tensor coefficients MEpidote =.... [[211.50 65.60 43.20 0.00 -6.50 0.00];... [ 65.60 239.00 43.60 0.00 -10.40 0.00];... [ 43.20 43.60 202.10 0.00 -20.00 0.00];... [ 0.00 0.00 0.00 39.10 0.00 -2.30];... [ -6.50 -10.40 -20.00 0.00 43.40 0.00];... [ 0.00 0.00 0.00 -2.30 0.00 79.50]]; % define the reference frame csEpidote= crystalSymmetry('2/m',[8.8877,5.6275,10.1517],... [90.00,115.383,90.00]*degree,'X||a*','Z||c','mineral','Epidote'); % define the tensor CEpidote = stiffnessTensor(MEpidote,csEpidote)
CEpidote = stiffnessTensor unit : GPa rank : 4 (3 x 3 x 3 x 3) mineral: Epidote (12/m1, X||a*, Y||b*, Z||c) tensor in Voigt matrix representation: 211.5 65.6 43.2 0 -6.5 0 65.6 239 43.6 0 -10.4 0 43.2 43.6 202.1 0 -20 0 0 0 0 39.1 0 -2.3 -6.5 -10.4 -20 0 43.4 0 0 0 0 -2.3 0 79.5
The Voigt, Reuss, and Hill averages for all phases are computed by
[CVoigt,CReuss,CHill] = calcTensor(ebsd({'Epidote','Glaucophane'}),CGlaucophane,CEpidote)
CVoigt = stiffnessTensor unit: GPa rank: 4 (3 x 3 x 3 x 3) tensor in Voigt matrix representation: 216.77 52.91 67.88 -1.96 -4.2 5.19 52.91 158.05 54.54 -3.39 -0.46 2.47 67.88 54.54 206.78 -7.29 -2.37 1.72 -1.96 -3.39 -7.29 60.88 2.2 -0.82 -4.2 -0.46 -2.37 2.2 75.31 -1.58 5.19 2.47 1.72 -0.82 -1.58 61.01 CReuss = stiffnessTensor unit: GPa rank: 4 (3 x 3 x 3 x 3) tensor in Voigt matrix representation: 197.74 48.59 60.64 -1.71 -4.26 4.72 48.59 145.04 49.96 -2.86 -0.38 2.02 60.64 49.96 188.42 -6.3 -2.2 1.41 -1.71 -2.86 -6.3 55.31 2.18 -0.6 -4.26 -0.38 -2.2 2.18 69.75 -1.61 4.72 2.02 1.41 -0.6 -1.61 55.39 CHill = stiffnessTensor unit: GPa rank: 4 (3 x 3 x 3 x 3) tensor in Voigt matrix representation: 207.25 50.75 64.26 -1.83 -4.23 4.96 50.75 151.55 52.25 -3.13 -0.42 2.24 64.26 52.25 197.6 -6.79 -2.28 1.57 -1.83 -3.13 -6.79 58.09 2.19 -0.71 -4.23 -0.42 -2.28 2.19 72.53 -1.59 4.96 2.24 1.57 -0.71 -1.59 58.2
for a single phase the syntax is
[CVoigtEpidote,CReussEpidote,CHillEpidote] = calcTensor(ebsd('Epidote'),CEpidote)
CVoigtEpidote = stiffnessTensor unit: GPa rank: 4 (3 x 3 x 3 x 3) tensor in Voigt matrix representation: 210.22 56.37 68.44 -1.49 -2.64 4.27 56.37 177.4 57.14 0.01 0.75 -0.11 68.44 57.14 205.87 -1.8 -0.08 1.24 -1.49 0.01 -1.8 59.21 1.55 0.53 -2.64 0.75 -0.08 1.55 72.83 -0.79 4.27 -0.11 1.24 0.53 -0.79 59.51 CReussEpidote = stiffnessTensor unit: GPa rank: 4 (3 x 3 x 3 x 3) tensor in Voigt matrix representation: 197.04 57.67 69.57 -1.69 -2.32 4.16 57.67 161.32 59.28 -0.11 1.21 0.03 69.57 59.28 193.44 -1.78 0.78 1.05 -1.69 -0.11 -1.78 51.7 1.69 0.44 -2.32 1.21 0.78 1.69 66.46 -0.71 4.16 0.03 1.05 0.44 -0.71 51.98 CHillEpidote = stiffnessTensor unit: GPa rank: 4 (3 x 3 x 3 x 3) tensor in Voigt matrix representation: 203.63 57.02 69 -1.59 -2.48 4.22 57.02 169.36 58.21 -0.05 0.98 -0.04 69 58.21 199.66 -1.79 0.35 1.14 -1.59 -0.05 -1.79 55.46 1.62 0.48 -2.48 0.98 0.35 1.62 69.65 -0.75 4.22 -0.04 1.14 0.48 -0.75 55.74
Next, we estimate an ODF for the Epidote phase
odfEpidote = calcODF(ebsd('Epidote').orientations,'halfwidth',10*degree)
odfEpidote = ODF crystal symmetry : Epidote (12/m1, X||a*, Y||b*, Z||c) specimen symmetry: 1 Harmonic portion: degree: 25 weight: 1
The Voigt, Reuss, and Hill averages for the above ODF are computed by
[CVoigtEpidote, CReussEpidote, CHillEpidote] = ... calcTensor(odfEpidote,CEpidote) % set back the colormap setMTEXpref('defaultColorMap',WhiteJetColorMap);
CVoigtEpidote = stiffnessTensor unit: GPa rank: 4 (3 x 3 x 3 x 3) tensor in Voigt matrix representation: 208.94 57.35 67.73 -1.31 -2.25 3.75 57.35 177.36 57.99 -0.15 0.58 0.23 67.73 57.99 204.96 -1.61 -0.18 1.08 -1.31 -0.15 -1.61 60.13 1.37 0.37 -2.25 0.58 -0.18 1.37 72.05 -0.66 3.75 0.23 1.08 0.37 -0.66 60.49 CReussEpidote = stiffnessTensor unit: GPa rank: 4 (3 x 3 x 3 x 3) tensor in Voigt matrix representation: 195.18 58.63 68.58 -1.49 -1.82 3.66 58.63 161.47 60 -0.24 0.99 0.3 68.58 60 192.09 -1.6 0.62 0.87 -1.49 -0.24 -1.6 52.4 1.49 0.35 -1.82 0.99 0.62 1.49 65.38 -0.57 3.66 0.3 0.87 0.35 -0.57 52.74 CHillEpidote = stiffnessTensor unit: GPa rank: 4 (3 x 3 x 3 x 3) tensor in Voigt matrix representation: 202.06 57.99 68.15 -1.4 -2.03 3.7 57.99 169.42 58.99 -0.19 0.79 0.27 68.15 58.99 198.53 -1.6 0.22 0.97 -1.4 -0.19 -1.6 56.27 1.43 0.36 -2.03 0.79 0.22 1.43 68.71 -0.62 3.7 0.27 0.97 0.36 -0.62 56.61
DocHelp 0.1 beta |